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Two forms of approximate equations for the dynamic flexure of beams are 
known: the Eernoulll-Euler equation 

(0.1) 

and the Timoshenko equation 

The latter is usually called a "wave equation". It leads to a finite 
propagation velocity of suddenly applied loads, and for this reason It Is 
considered essentially more suitable for the solution of transient problems 
than Equation (O.l), which gives an Infinite velocity of propagation of wave 
fronts (see, for example, Cl]). 

Fcr beams of circular cross section and for strip-beams taken from a rec- 
tangular plate of Infinite width, Equation (0.2) may be derived from the 
general equations of the d lcs of an elastic body [2]. To do this, one 
represents the solution (* Yam In the form or a series In powers of the distance 
of a point from the neutral axis and one disregards all terms and derivatives 
of higher than fourth order (In time as well a8 In the coordinates) In the 
dlfferentlal equations of Infinite order that are obtained. 

The fact that In the derivation of (0.2) It was necessary to neglectIngher 
derivatives, would seem to Indicate that the application of this equation to 
problems of transient propagation of deformations along the beam Is excluded. 
To this one should add that (0.1) as well as (0.2) allow one to formulate 
boundary conditions only in the sense of Saint-Venant. 

The sufficiency of the latter Is guaranteed In static problems by the 
Saint-Venant prlnclple. In accordance with this principle, an Improvement 
in the theory by the inclusion of the effects of self-equilibrating boundary 
loads would lead onl to local corrections in the stress field and would not 
reflect (practically T on the values of deflections. ~1 ddnamical problems on 
the other hand, stresses and displacements excited by an end load (without 
regard to whether or not It Is self-equlllbrat5.ng) are not limited to a 

*) See likewise the dissertation of X.0. Selezov "The Investigation of tLe 
propagation of elastic waves In plates and shells". Institute of Mechanics, 
Academy of Sciences tialnlan SSR, 1961. 
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narrow zone near the loaded end, as a result of which the possibility In such 
problems of posing boundary conditions only “In the sense of Saint-Venant” 
Is problematical. 

The above casts doubt on the admissibility of the ‘waveW equation (0.2) 
(and even more on the %onwave” equation (0.i)) for the solution of problems 
of deformation propagation . The applicability of the equations is doubtful 
because of the restrictions on their solutions satisfying boundary conditions, 
and likewise even in cases when the boundary conditions do not contradict the 
applicability of the equations (i.e. formulated according to Sain-Venant). 

There are a number of theoretical [ 2 to 73 .and experimental 1: 5 and 63 
papers on the applicability of Equations (0.1) and (0.2); however, until 
the present time there exist contradictor 
opinion of some, Equations (0.1) and (0.2 3 

opinions on this question. In the 
are not suitable for the solution 

of problems of the propagation of disturbances and may be applied only to the 
study of processes which change sufficiently smoothly both in time and in the 
coordinates. In the opinion of others, Equation (0.2) covers all problems in 
which the boundary conditions are given In the sense cf Saint-Venant. 

In the present paper we attempt to answer two fundamental questions. 

1. To what extent is It valid to carry over the principle of Saint-Venant 
to the dlnamics of beams If One limits the boundary conditions to those of 
Saint-Venant. 

To what extent Is it valid to solve problems with Saint-Venant boundary 
con%tions by means of Equations (0.2). 

The question 1 Is first clarified from a 
tion l), and then a quantitative evaluation 9 

uallcative point of view (Sec- 
Section 4) is given. The second 

auestlon is clarified bv means of an analvsis of the solutions of Equation 
(0.2) and certain other-equations, and a comparison of these solutions with 
exact solutions of the equations of dynamic elasticity for certain articular 
transient oroblems. Such comnarisons were also carried out earlier P 4, 8 and 
91; howevkr they either compared solutions of stationary problems (“J, or 
exact solutions were represented In the form of an expansion of stationary 
solutions (modes). Equation (0.2) also gives two such modes, whereas the 
exact solutlnn leads to an Infinite number of modes. To put all of these 
together so as to obtain a transient or stationary process with a specified 
form of disturbance is not possible. It would seem that if the higher modes 
(absent la (0.2)) are essential in the solution, then results given by (0.2) 
are not reliable. As will be shown subsequently, this is not always the case. 
The Inadequacy of an expansion In modes forces one to resort to other methods 
of solution. 

1. @ the proullulltlrs of propagation of non-self-equilibrating and 

rrlf-rqulllbratlng l ad loadr, We examine a semi-infinite beam to which at 

time t - 0 is applied a certain abrupt self-equilibrating load, which 

thereafter remains unchanged. 

This problem reduces to the solution of Equation 

(h + CL) grad div u - p rot rot u - pu” = 0 

with the initial conditions 

u= 0, u* = 0 for t=O 

(1-l) 

(1.2) 

*) It should be mentioned that the Sustlflcatlon C5, 8 and 91 or refinement 
[f and 101 of the equations by comparison of phase-velocltles‘ls not always 
valid. What occurs Is that waves corresponding to the lower branches of the 
dispersion curves for a beam as a three-dimensional body becomes surface,, 
waves %or high frequencies, which cannot occur In models described bya beam 
theory . Hence, the corresponding curves of phase velocities of three- 
dimensional and one-dimensional theories for high frequencies possess dif- 
ferent forms of deformation and their coincidence Is not to be taken as evl- 
dence for the use of the one-dimensional theory. 
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and the boundary conditions 

CJ xz = fX& (0, UXZ = jz&) (t) for z=O 0.3) 
u=O forx=on 

Here dots denote differentiation with respect to time, 6,(t) is the 

Heavislde function, and the functions 

fx = fx (ar, 49 fv = fv (sr, 4, f* = fz(Y, 4 

satisfy Equations 

lf,ds=O, if&s=O, if,ds=O, (yf,ds=O 

s 
zfxds = 0, 

s bfv - l/f*) ds = 0 U-4) 

We look for a solution In the fo?m 

u = uc + u* (1.5J 

Here u,(x, y, z) Is the solution of the static problem for the same beam 

with the end loading 

0 - fx, XX - (Txy = A/, 0x2 = fs 
Substituting (1.5) in (1.1) to (1.3) we come to the conclusion that the 

unknown vector u* should satisfy Equation (1.1) for the Initial conditions 

u* = - uo (C Y, 49 u**= 0 (f = 0) 0.6) 

and the stresses corresponding to the displacements U* for t > 0 , should 

be zero on the side surfaces of the beam as well as on its end. 

Hence the original transient problem has been partitioned Into static and 
dynamic problems. In the latter, the motion of points of the beam are excl- 
ted by initial displacements taken from the static problem. But by virtue of 
Saint-Venant's prlnclple,the displacements u, are of local characte?, being 
already practically damped out for JC of the order of the cross-sectional 
dimension of the beam. It is physically obvious that the motion U*, excited 
by such a local disturbance, 
along the beam. The width of 

leads to the propagation of a packet of waves 
this packet will at first be close to the width 

of the zone of initial disturbance and subsequelitly will Increase because of 
dispersion. 

At an arbitrary instant of time the following equation should be SatIS- 

fled 
v, =Vv, + T* (1.7) 

Here v, is the potential energy of the Initial disturbance, and V+, T+ 

are the potential and kinetic energ%es of points of the beam In the dynamic 

problem. 

Turning now to the original problem, and taking Into account that Its 
solution Is the sum of solutions of static and dynamic problems, we arrive 
at the conclusion that in this case the motion of points of the beam reduces 
to the propagation along the beam of a narrow wave packet. Near the beam 
end x = 0 the stress field correspond+ing to the static Solution 1s very 
rapidly established (after the time - the time of passage of the defor- 
mation wave over a distance of the orier of the cross section of the beam). 

For t - m (in practice for t>t*) the sum of the kinetic and Potential 
energies of points of the beam approach 2V0, of which one half remains In a 
small neighborhood of the cross section x = 0 and one half Propagates along 
the beam. 
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A fundamentally different picture Is obtained If one assumes that the end 
loading is non-self-equilibrating (I.e. even if one of the equalities (1.4) 
Is not fulfilled). Then the above Dartltion of the Droblem into two Darts 
turns out not to-be possible since for t- = the displacements [ul-*m. I'hysl- 
tally, this means that upon the sudden application of a non-self-equlllbratlng 
end load to a semi-infinite beam the corresponding displacements continuously 
Increase with time and the sum of the potential and kinetic energies ofpoints 
of the beam approach Infinity for t-4- . 

It Is clear that In this case the disturbance fronts propagate with the 
velocities of dllatatlonal or shear waves; however, the disturbance zone 
does not have the character of a narrow wave packet but spans a continuously 
widening region starting from the loaded end. 

We now assume that both self-equilibrating and non-self-equilibrating 
loads are suddenly and simultaneouslv aDDlied to the end. wherebs the maximum 
val .ues of the stresses for both loads are of the same order of magnltide. 
In 
V,. 

view of what has been Indicated above, the ratio vt+ TL)/ (v,-& T5) (where 
TL are, respectively, the potential and kinetic energies of the beam 

ezcited by the self-equilibrating load and pot T are excited by the non- 
self-equilibrating load) continuously decreases with time, approaching zero 
for t + m . 

For t> t* this ratio must become extremely small, whereby the correc- 
? tions app'i'ed to the stresses because of the self-equilibrating load , can 

manifest themselves only in the Immediate neighborhood of the loaded end and 
near the disturbance front and do not Influence the displacements of the axis 
of the beam. 

Hence, one may assert that upon the simultaneous application of both self- 
equilibrating and non-self-equilibrating loads the former may be neglected 
on the same basis as Is done in static problems, I.e. In view of the essen- 
tial local nature of the correction. 

For the same reason Saint-Venant's principle (in the sense Indicated 
above) Is valid In the investigation of an important class of problems. The 
above derivation, however, does not extend to-periodic loads. -The latter 
may exert an influence of the stress and displacement fields over the entire 
length of the beam (independent of the type of loading). Therefore, it is 
not, In general, possible to neglect self-equilibrating end loads in comparl- 
son with non-self-equilibrating end loads in the latter case. 

As a specimenpr~blem for a theoretical investigation of the questdon thathave been 
posed above, we consider the plane deformation of an Infinitely wide Plate, 
without limiting ourselves to the bending problem. We shall give equations 
for the case of displacement that are symmetrically distributed with respect 
to the center of the plate as well. The latter case is of interest because 
It leads to the same questions as In the bending problem; however, it Is 
essentially more straightforward from the mathematical point of view. For the 
construction of approximate equations we use the method of representing the 
displacements and stresses In a series of Legendre polynomials [ll]. In dyna- 
mical problems this course Is more logical than the traditional series repre- 
sentation in the distance from a point to the middle z-surface. In the first 
place, by using a Fourier series instead of a power series we can also Include, 
almost without. any additional restrictions, solutions with dlscontinuities of 
the first type (i.e. we may apply the theory to wave propagation problems). 
In the second place, by expanding the stresses in a series of Legendre poly- 
nomials, we may separate the 5elf-equilibrating part of the stress field In 
a pure form from the non-self-equilibrating part over a cross section of the 
plate. This is important If one has in view an investigation of the possi- 
bility of using Saint-Vaenant's principle In dynamical problems. 

2. & l x8ot formulation of the prbblemj drrlv&.lon of rpprox&sate squa- 
tlonr from the oxaot equatiom. We consider the equations of motion of an 
elastic body, written for the case of plane deformation 

aau -_ 
a39 ;g + C212 g + (1 - C212) 2 = - qx 

azlfl ( czl = cdclj (2.1) 
-_ 
a9 g2 + C,12 ag i-- (1 - C,,2) ag L= - qr 
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All of the coordinates and displacements in (2.1) are nondimensional, 

which is achieved by dividing the dimensional coordinates and displacements 

by the half-thickness h of the plate. The time T In (2.1) Is likewise 

nondimensional, whereby 

r = (t / h) Cl, Cl = V(h + 34 / PI da = VP3 (2.2) 

Here c1 is the velocity of dilatational waves, cg is the velocity of 

shear waves, (a unit interval of time thus corresponds to the time of propa- 

gation of a dilatational wave over a distance equal to the half-thickness of 

the plate), and q,, q= are nondimensional body forces obtained by dividing 

the corresponding components of the body forces by (A & 2~) /h. 

Multiplying each of Equations (2.1) by Legendre polynomial P,(Z) (n = 0, 

1, 2, . ..) and integrating over the thickness of the plate, taking into 

account the absence of stresses on the planes 2 =* 1) we obtain for 

un (x, T) = i UP, (z) dz, w,, (z, T) = i wP, (z) dz (2.3) 
-1 -1 

two Independent Infinite systems of partial differential equations. In these 

equations, which will occur below, we use the notation 

urn (z, 4 = i qJ’, (4 dz, ~zn (3, 7) = i qzp, (4 dz (2.4) 

1. The system descL:bing the longitudinal deformat& (u is even, and 

W is an odd function of Z) 

rLsn - 24, l * + 2 (1 - 2c,;) w’ (1) = - qro 

uzw - up l * + ~c,,~u, - 3 (1 - Czle) q - 6C,,2 u (1) + 
+ 2 (1 - 2&y w’ (1) = - qxa 

,.................................** 

c,;*l” - WI” - (1 - C,P) ug’ - 2w (1) + x,,au (1) = - QZl (2.5) 

c$ws” - wg” + 15w, - (1 - C,,z) 240’ - 5 (1 - C,,z) us’ - 

- 12u (1) + 2&h (1) = - qzg 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..a . ..a.. * * i 

Here u(l), m(l) are the values of I( , U) for I = 1 

u(1) = Iz (~++?I, w(1) = 2 (n+f)wn (2.6) 
==o, 2,... n=1,3,... 

2. The system describing the flexural deformations (u is an odd and w 

is an even function of 8 ) 

UIX - 241 l * - (1 - C,,z) wo’ 
(2.7) 

- 2c2,2 u (1) + 2 (1 - X2,2) 10’ (1) = - qx. 
us** - us . . - 15c,,B u1- (1 -C,?) wo’ - 5 (1 - C,,z) w,’ - 12c,,Bu (1) + 

+ 2 (1 - 2Gla) ff.7’ (1) = - qxs 
.*.....-...-...............................,.. 
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(2.7) 
cont. C&,” - w;’ + 2c,,eu’ (1) = - qzo 

c,,tii’ - w;’ + ti, - 3 (1 - C$) z+’ - 6w (1) + 2Cz;u’ (1) = - qz2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...* 

Here 

u (1) = 2 p+ +) Un, w (1) = 2 (n+f)wn (2.8) 
?3==1,8,... tl=0,2,... 

By retaining In these systems a finite number of equations, one may obtain 

approximate variants of the theory. In this procedure, if one retains terms 

up to us., wp-* (In the first case) or terms up to u~.+~, wan (in the second 

case) In the expansions of the displacements in Legendre polynomials, then 

It Is necessary to delete terms In the right-hand sides corresponding to the 

terms neglected In the series. In view of the linearity of the problem, the 

left-hand sides of the differential equations for all Us, m* corresponding 

to an arbitrary approximation will be the same. We give some of the opera- 

tors of the left-hand sides of these equations for some first approximations. 

Retained 
quantities 

Operator 

Longitudinal deformations 

wm Ul 

WOV u19 wa L&22 + i5c822 L4L5 + 3clS2 $1 

J4B UlC w29 %I L12L,2 + 15 C&&L, + 525 C,,z (L&,, + 3C,,2 $) 

Flexural deformations 

L,L, -t 3 a$ 

(2.9) 
(2.10) 

Here (2.13) 

Liz z$.$_& . (i=i,2, . ..( IO), cij = -$ (2.14) 
* 

The expression for the propagation velocity of longitudinal displacements 

c3 corresponding to the state of plane stress has the form 

c3 = ‘+L(li.+p) ” = ( 1 ( 
‘12 

P (h + 2J.4) (1 -Eva, p ) 
(2.15) 

The parameter c, in (2.14), having the dimension of velocity, takes on 

the following 

i=2 
c; = 0.294 

From these 

1) For an 

values for x = 1.411 (V = 0.292) : 

3 4 5 6 7 8 9 10 
0.830 0.805 0.292 0.99 0.292 0.347 0.738 0.246 

results one may observe the following. 

arbitrary degree of accuracy the derived approximate equations 
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give propagation velocities of dlscontlnultles which are equal to cl and oa. 

These coincide with the velocities of dllatatlonal and shear waves (2.2). 

The latter 1s a consequence of the fact that terms with higher derivatives 
In each operator are always products of power of two homogeneous wave opera- 
tors L,and L* , to which corresond just these velocities. 

2) The equations with the operators (2.9) and (2.11) (I.e. the first 

approximations for problems of longitudinal and flexural osclllatlons of a 

plate), In which are considered only non-self-equilibrating terms In the 

series for the stresses, coincide with the standard equations for longltudl- 

nal oscillations of a plate in plane stress and with the Tlmoshenko equations. 

However, the values of the coefficients In the latter equations do not coln- 

tide with (2.9) and (2.11). 

Indeed, ln the adopted notation the equation of longitudinal osclllatlons 
has the following form 

8% 
ad- 

C,'!?? = 0 (2. i6) 

While the Tlmoshenko equation Is written In the form 

(2. i7) 

where (adapted to plane deformation of a plate) 

a, = LiO, as = 2.02 (aft er Timoshenko [13]) 

=1 = 1.10, a, = 2.26 (after Uflland Cl]) 
a, = 1:26, a2 = 2.05 (after Selezov) 

The latter values of (1, and Q were obtained by expanding the solutions 
In a power series In 2 and discarding the Infinite number of terms with 
derivatives higher than fourth order in the equations that are obtained. 

It Is known that Equations (2.16) and (2.17) cover a number of problems 

In which the displacements and stresses are sufficiently smooth (slowly chang- 

ing) functions of r and 7 . Hence It follows that equations correspond- 

ing to the operators (2.9) and (2.11) which correctly reveal the character 

of the most rapidly changing parts of the solutions, must give the essential 

error In determining slowly changing displacements and stresses. 

3) The latter insufficiency Is eliminated If one turns to the second 

approximations to which operators (2.10) and (2.12) correspond. 

In fact, the terms ln square brackets of the operator (2.10) are Identical 
to (2.16 

t 
while the terms of the operator (2.12) are close to the coefflcl- 

ents of 2.17). At the same time the asymptotlcs of the operator (2.12) for 
slow processes 

&+6W$ 

coincide with the asymptotlcs of the operator (2.17). 

Therefore, the equations of the second approximation describing the asymp- 
totic behavior of the most rapidly changing processes also give valid solu- 
tions for slow processes. In the light of the above, the equation of longi- 
tudln&l osclllatlons (2.16) and the equation of flexural osclllatlons (2.17) 
may be treated (from the 
approximations of (2.10) 

of applying general methods) as second 
in whtch are dlsre 

derivatives (fourth order In 'and sixth order In ? 
arded terms of higher 
2.12)). 
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Less formal interpretations of Equations (2.16) and (2.lf) may also be 
given. 

In formulating the operators (2.9) and (2.11), all self-equilibrating COG- 

ponents were disregarded. 
may proceed differently: 

Without raising the order of the operators, one 
one may take into account displacements correspond- 

ing to the first of the self-equilibrating components of body forces, assum- 
ing an asymptotic dependence (for slow processes), 
1~~” j < 3CJ 1 w, 1 

Thus, for,Iw;I < 31~~1, 
from the third of Equations (2.5) we obtain 

1L'l = - l/g (1 - 2C,,2) ua’ 

and substituting Into the first equation, we find 

-& (4 = c132Y,o (2.18) 

which Is the wave equation for plane deformation of a plate. 

Neglecting derivatives of w and us in the second and third equations 
of the system (2.7), we obtain t*) Equations 

w ” - 
0 6/F&2wO" + 3u,’ = - 61g&~qzo 

Ul” - C$u,” - ~l,c292 (34 + wo’) = - cgqn 
(2.19) 

with the basic operator (2.17) identical to the system of equations of Timo- 
shenko [ 123 . 

Thus the “en&neering equations” 
tions and the Tlmoshenko equations, 

- the equation of longitudinal oscilla- 
are the consequence of the theory of 

elasticity If one considers processes in which d&placements corresponding 
to %ne first of the self-equilibrating components of the body forces change 
sufficiently slowly while the remaining components may be neglected. I)y the 
indicated assumptions, a simplification of the equations is attained, but 
one loses accuracy in the determination of the velocity of propagation of 
dlscontlnuitles and In the description of the stress and displacement fields 
In their neighborhoods. 

4) Without a special Investigation, it Is Impossible to say how much this 
loss is essential for evaluation of the practical significance of the equa- 
tion of longitudinal oscillations and the Timoshenko equation. As will 
become clear In the sequel, In problems of propagation of deformations in 
plates and beams the Interest Is focussed not only on the actual front but 
also on the quasi-front, on whlcb the stresses, although not suffering dis- 
continuities, have essentially larger gradients. The energy of the wave 
packet Immediately following t ,!e actual front Is relatively small for suffl- 
clently large distances from the source of the disturbance (t 9 1) . The 
overwhelming part of the energy follows the quasi-front. This signlflcantly 
decreases the Interest In describing the motion in the neighborhood of the 
front and forces one to focus attention on the region where the larger part 
of the energy of motion Is concentrated. 

The latter should be kept in mind when one considers the feasibility of 
approximate equation? for the dynamics of plates and beams. Moreover, con- 
slderlng that a correct estimate must shcw a preferential distribution of 
enrgy, It Is Impossible to unrestrlctedly?reject even the Bernoulli-Euler 
equation (0.1) as an apparatus for the study of- the propagation of bending 
deformations along the beam on the basis that In this eauation one assumes 
aI = azm 0 , I.e. Ehat the velocity of wave propagation is assumed Infinite. 
In the subsequent Sections we give a number of examples which Illustrate 
this and which throw light on the degree of accuracy and the region of appll- 
cablllty of various approximate variants of the equations of the dynamics of 
beams and plates. In passing, we give some quantitative results relative to 
the propagation of self-equilibrating disturbances along a beam (plate). 

*) Sometimes [5] It Is asserted that the Tlmoshenko equations are based on 
the assumption of plane cross sections. In the derivation of the Timoshenko 
equations that has been given here, the assumption of plane cross sections 
was not used (us f 0). 
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3. ‘Pranmltlon proorerer In the problem of longitudinal drforumtlona of 
platen. As a subject for investigation and comparison of exact and approxl- 

mate equations of motion of beams, we consider a transient problem which is 

from a mathematical point of view one of the simplest. This is the exclta- 

tion cf plane motion of an Infinite plate by a concentrated body force on 

the plate pz changing according to the law 

QX = @c (4 6, (4 60 ($9 Qr = QL (4 6, (4 6, (4 (3.1) 

Here 6, is the Dlrac function, 6, is the Heavislde function, and inlti- 

ally (7 = 0) the plate is at rest (U = w = u* = W* = 0). 

This somewhat artificial problem allows one to use not only the Laplace 

transform but the Fourier transform as well, which is Its advantage compared 

to more realistic problems wherein the plate Is semi-Infinite and Its motion 

is excited by boundary loads varying in an analogous way. 

We start with the case where QX Is an even and Q, is an odd function of 

,z , I.e. with nonflexural deformations of the plate. We construct a solution 
proceeding from the equations of the second approximation to which corre- 

sponds the operator (2.10). This operator, in addition to the non-self- 

equilibrating stresses over the cross section, also takes Into account the 

sef-equilibrating stresses c,, which vary linearly. In this situation 
Equations (2.5) take on the form 

uon - 240 l * + 3 (1 - 2G17 ~1’ = - Qxob (4 4, (4 (3.2) 

- (1 - 2C,,2) UCJ' + C,,2Wl" -w1** - 3w, = - Qz16,(r)& (z) 

Qxo= i Q,(z)dz=2Q, Qzl= 5 zQ,(z)dz=2R (3.3) 
-1 -1 

After applying to (3.2) the Fourier transform (F) In Jc and the Laplace 
transform tL ) in 7 we obtain 

(8 + P”) UcLF + 3 (1 - 2C,,S) iqw,LF = 2Q lp (3.4) 

- (1 - 2~~12) iqu,LF + (C2,‘q2 -I- pa + 3) wlLF = 2R 1 P 

Therefore 

U,,=F = A-’ (ps, @) [(C2t$ + p2 + 3) 2Q / p - 3iq (1 - x212) i?fi /' PI 

wl=F = A-lw2, q2) [iq (1 - 2C2:) 2Q 1 p + (d + P') m /PI (3.5) 

A (p2, 8") = p* + [(i + c,:) @ + 31p2 + '%?t + 3&?? (3.ti) 

Since (J-L’ LF *.X0 = - iqu, + 3 (1 - 2c,,B) WILF one may write 

g=F _ 
[ 
-- +3 (I-2c *12y tq' +P:y;'@2q2~ $- =O- qa+P2 1 Q+ 

-f- 3 (l-~C21~)A~~~ql~ 7 2R (3.7) 



302 V.V. Novozhllov and L.I. Slepian 

Hence 

Qoo oxxo=~ S[ -CO 

x e-~~ @ + $ 1 3 (1 -2Cala) ‘OS $1; JJ” e-iqx dq (3.8) 
--oo 

here (- PIa), (- P,') are the roots of Equation A(pat$) = 0 

&,*a = '/a [(I + Cl:) 4” + 31 f V’/r [(I + Ca,Z) q2 + 31a -_Ca,Z@ - 3CSt@ 
(3.9) 

Graphs of the functions of p1 (q), pa (q), ap, / aq, ap, / dq are shown 

In Flg.1. 

If 7-m, the basic contribution to the value of the first Integral 

(3.8) will be given by the integration of the first term and likewise the 

integration In the neighborhoods of the zeros of the denominators of the 

terms ln parentheses (I.e. In the neighborhood of p = 0 and (1 = m ). 

In this case one may apply the expansion 

pl" = 3 + 0.463qa + . . . . p1 = r/3 + 0.13378 + . . . for Q + 0 (3.10) 

pa” = 0.830$ - 0.0305g’ . . . . pa = 0.911q - 0.0167q3 $e*. 

pp = $ + 0.722 + . . . . p1 = q + 0.3614l + . . . for q-+ 00 (3.11) 

Pa” = 0.2944” + 2.278 + . . . . pa = 0.541q + 2.06q-’ + . . . 

Restricting ourselves for the time being to the case of non-self-equilib- 

rating disturbances, I.e. setting R = 0 , we have 
(3.12) 

sin (p + pif) + sin (Qr - AT) 
qa - Pia 

k-1b.Q 

whereby on the basis of the above considerations for 7-m 

o2$%__1+& [sin (qs + (- l)i m) + sin (q5 + (- l)i @I$ 
0 i=l 

(m = (0.9iiq - O.OM?qs) r, n = (q + 0.3619~‘) z) (3.13) 

From the approximate solution that has been obtained It follows that: 

a) For z=c~(c<C,~= 0.911) the basic contribution Is given 

by the first term of (3.13) (in the second term two components mutually can- 

ccl), i.e. In this range 
o;uco-- Q (3.14) 

b) For x = 0.911z -I- e , the first and second terms of (3.13) give 
the basic contribution, whereby 

%X0 -- Q(-&-~~sin(qe+O.O167q%)$-) (3.15) 
cl 
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If one lets cz = (0.0167~)%, then Formula (3.15) may be rewritten in 

the form 
I 

al 

( Ai = f \ cos(t*+cp:)dr) (3.16) 
0 

Here it Is the Airy function 

[13] whose graphs may be found In 

r143. 
c) For a=~- c (6 Z= 0) the last 

term of (3.13) gives the basic con- 

Fig. 1 
tribution (the first two terms mutu- 

ally cancel) and 

uXLC0-- QJo (1.206% (3.17) 

Therefore, Equations (3.1) give the following picture of propagation of 

deformation upon the application of a sudden force Q, = 2Q6,(46,(z). 

1) Disturbances with jumps In the stresses 8 propagate with the 

velocity of dilatational waves (c,) . At a sufficient distance from the 

plane of the disturbance r = 0 the wave packet following behind degenerates 

to a narrow peak-signal which carries a small part of the energy (approaching 

zero for 7-m ) 

2) A quasi-front propagates with the velocity cg . In the region of 

the quasi-front 

Q r-Ai(0)~=- -lww_ r(v3J;;v"' 0.911(0.0167z)J" = -0.88fva (3.18) 

3) In the Interval between .Y = 0 and the quasi-front the stresses 

are close to the constant value - Q . 

We compare the results that have been obtained with the exact solution 

of the same problem arising immediately from (2.1) and with a cruder approxi- 

mate solution based on the equation of longitudinal oscillations (2.18). 

In this case the equation of longitudinal oscillations leads to the loss 

of an actual front and of the narrow zone of disturbance In the Immediate 

neighborhood of it, whereas the quasi-front turns Into an actual front with 

a jump in the stresses 0 . In the region between the front and JC = 0 the 

obtained stresses are constant : gxXO= - 4 . As far as the exact solution 

of the problem is concerned, applying to (2.1) the Fourier and Laplace inte- 

gral transforms we come to the following formula for the tiplace presenta- 

tion: 
(3.19) 

Q -1 L CSm= -$- + + Gl2 -22)‘P” $,,%$l$d~,t¶) 
6 
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nl = Vq2 + p2, n2 = )fF+c122p2 (3.20) 

Having in view a solution for sufficiently large x an?l 7 , we expand 

the hyperbolic functions entering In B Into a power series and retain the 

first two terms. 

Then we obtain for oXXc an expression which differs from (3.8) only in 

the values of the roots (- pla ), (- paa ) , namely (3.21) 

p2s = 0.83Oq2 - o.o47oq* + . . ., p12 = 3 + 0.170q2 + . . . for Q-) 0 

This difference leads to a certain velocity, different from that in (3.18) 

(less by 13%) , of the change of the stresses in the region of the quasl- 

front, namely, 
- - - 0*77~-'h *ml _ 
az 

( for x = C31z) (3.22) 

In all of the rest, the picture which was obtained earlier on the basis 

of the second approximation (3.2) Is confirmed. By different means the 

investigation in [lb] comes to the same results (for the region x = C,, T), 

which are also qualitatively confirmed by experiments (*). 

The above methods are not suitable for the Investigation of the deforma- 
tion in the Initial period of motion (for relatively small 7 ) . Here one 
may effectively use an expansion of the deformation Into a Fourier series 
over an interval which is varied so as to completely cover the deformed part 
of the Plate (0 61 XI<+ 

The advantages of this method are the possibility of applying a Fourier 
series to transient problems for unbounded regions. Also in transient prob- 
lems for bounded regions convergence of the trigonometric series Is Improved 
in that Interval of time In which the disturbance has not yet propagated over 
the entire region. Formally, the indicated solution is obtained from the 
solution corresponding to the constant interval 21 with a subsequent change 
of 21 into 27 . 

In the present problem, when the second of the approximations (3.2) is 
used, the Fourier series on the interval 2~ = 27 is obtained from the Four- 
Ler Integral (3.12) by sn argument which Is the reverse of that which is 
usually applied to obtain the Fourier Integral from the Fourier series, i.e. 
by replacing 9 by nn/r (n is the number of the term of the series) and 
the Integral by a sum and the zero order term of the series 
by J-/T and the remaining In this case we obtain 

for 0<2<2 
Q,;o1=0 for x > Z (3.23) 

Here pi, pa are defined, as above In (3.9), by the substitution g =TL=/T/~ 

The results of the calculation according to Formula (3.23), illustrating 
the evolution and establishment of the stress wave in the plate, are shown 
In Flg.2. The calculation is carried out for values of 7 from 0.5 to lo. 
For subsequent va-lues one may use the.estlmates which were given at the 

*) In Cl43 there is an error In Formula (41):; In the first of the square 
brackets the numerator is equal.to 6 and. not 2 . 
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beginning of the Section. The dotted lines In Fig.2 correspond to the ele- 
mentary theory. 

0 2 4 6 a 

Fig. 2 

4. Invrrtlg~tlon of thr IrAnt-Venant effrot in tha problem of longitudl- 
nal orolllrtlon~ of a plate. In the previous Section the case Q # 0, R- 0 
was Investigated. The converse case R # 0 , Q = 0 also Is of Interest 

Inasmuch as In this case the body forces p, are self-equilibrating and, 

therefore, the propagation of the deformation should correspond to the Saint- 

Tenant principle (I.e. In the form of a narrow wave packet continuously 

"melting" because of dispersion). 

It Is clear that ln the case under consideration the displacement u, does 

not have a deciding Influence on the propagation along the plate of self- 

equilibrating shear stresses. 

Substituting Into the second of Equations (3.4) the quantity uLF = 0, 
we obtain 

(C$q9 + p= + 3) wy = 2R f P 

Hence we have the simple value 

wlF. = 2R sin VCdqaf 3 T 

vCaIaqa+3 

R-lw, = $Jo (v/3 (T2 - c&+>) (caz > WI 

(4.2) 

(4.3) 

For large 7 and small (T - .r)~-l 

‘= - c,,w; + 0 (z-‘) (4.4) 
z - RJ, (‘1/3 (z” - C,,2r2)) (car> Rx) 

In the region where the external disturbances are applied 

%,I - - - R exp (- l%,,x) (4.5) 

The propagation process of stresses that are self-equilibrating over the 

cross section ( uXzI ) In the lnltlal period of motion, may be studied more 

exactly (without disregarding u,) by expanding the stresses into a Fourier 

series over a time-varying Interval. 

Proceeding from (3.5) and the connection of the stresses to the dlsplace- 

ments we fir&d 
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R-‘6x,,l = ---o(c,l r-4 +;c,t 5 {&i&g [cosp,s-cosp,r + 
Tb==l 

+ 4' i tMiJitl * -Ef pi'] + CIza k (1 - cos nn Czl)) sin qz’ (4.6) 
i=1 

where pl. a are defined in the same way as In (3.23). 

Fb. 3 

various values 0.5 < Z < 10 are 
shown ln Flg.3. From this it 
follows that starting with T= 5 
the deformation already conver- 
ges to a wave packet of width 
of the order of unity which pro- 
pagatss with the velocity of a 
shear wave cp and to the estab- 
lishment In the neighborhood of 
n - 0 of a stress field which 
Is near the static field corre- 
sponding to the applied load. 
It Is clear (as a consequence 
of the arguments given In get- 
tlon 1 and the_ evaluations given 

above) that with Increasing T this picture Is retained. Hence the contln- 
uatlon of the calculations past T z 10 does not give anything new. 

In the case of periodic disturbances, a consideration of the connection 

between the displacements and self-equilibrating and non-self-equilibrating 

stresses Is essential In a study of the Saint-Venant effect. 

If such a connection Is ignored (the study of an unbounded medium), one 

Is led to the following conclusion [ 163 : the Saint-Venant effect (“boundary 

layer”) takes place for frequencies below a certain critical frequency(depend- 

lng on the frequency of the form of excitation) and Is absent for higher fre- 

quencles . h the case of a plate, a different conclusion is reached. 

Changing In (3.2) the value of a,(~) to ei”‘, and proceeding from the 

connection between the stresses and deformations, we obtain for I( > 0 

R-lc~,,~ = - da’ (412 - qZ)-l [(qt + 0”) e-*1X - (42 + 01~) e-q@] (4.7) 

q1 : = l/2 [-- (1 + C1,2) w2 + 3c,,21 & 

+1/lj4 (C,,” - 1)2 co’ - 3 (Cl,” - 2Cs12) co* + 36 (1 - C212)s - 

qp> 0, qz <0 for 0<oa<3; q12<0, q22<Oform2>3 

The root go Is always Imaginary and therefore the corresponding part of 

of the stresses 1.7,. 1 does nbt damp with an Increase in the coordinate value 

and the x-effect of Saint-Venant Is absent. The effect becomes apparent for 

uJ*< 3 only for the part of the stresses corresponding to the root 9,. 

Thus In stationary processes self-equilibrating loads continuously Induce 
stress waves which propagate along the plate. 

It should be mentioned that for both stationary and transient processes 
a self-equilibrating disturbance excites also non-self-equilibrating stresses. 

As a consequence of this, the stress waves described above, propagating 
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along the plate, carry only part of the energy emitted by the external dis- 
turbance. 

however In the transient case the total energy leaving the region of the 
self-equilibrating disturbance remains equal to Vc (see Section 1). 

Above, we solved a particular problem that shed light on the peculiarity 
of propagation of self-equilibrating and non-self-equilibrating disturbances 
for longitudinal deformations of a plate. A comparison for ~91 of the 
solution of Equations (3.2) with results from the theory of elastlclty funda- 
mentally confirm the validity of this solution. One cannot say that this 
conclusion Is unlxoected if one considers that for T% 1 the quasi-front 
smoothes out, as a-consequence of which the higher cokponents k the kgendre 
polynomial expansion of the displacements become unessential. 

The acceptability of the "engineering" equations for describing dynamic 
deformations for small 7 and suddenly applied loads is usually questioned. 
&low we carry out a comparison of solutions of (3.2) and the theory of elas- 
ticity for small 7 . _ 

5. ‘Phr dynualo flexibllltp of a plate for rmall I , We investigate the 

dynamic flexibility of a plate under the action of body forces 

qx = 2Qb (4 60 03 

We will first find a solution of the equations of elasticity. 

The homogeneity of the characteristic polynomial corresponding to the equa- 

tions of elasticity (2.1) (in (2.1) only second order derivatives enter) 

allows one to construct a solution in the form of separate waves. Th$s IS 

convenient to use Cl5 and 201 for small 7 . 

The solution is carried out by the application of Laplace and Fourier 

transforms. In this as a consequence of the homogeneity of the tratISfOI?n 

representing waves reflected from the free surfaces of the plate, it turn8 

out to be possible to establish the formal Identity of the Inverse Fourier 

transform withthe direct Laplace transform. As a result, the necessity of 

carrying out both the (L) and (') inverse transformations Is eliminated. 

In the case of longitudinal deformations, we find by means of a LaPlaCe 

transformation in T and a Fourier transformation in x from Equation (2.1) 

Considering the boundary conditions for I = +l 

dtoLp + f (C212 - 2) (- iquLF + G) = 0, dz 
t5.2j 

The solution of the system (5.1) for uoL(O,p) has the form 

(5.3) 

where B Is determined by Expression (3.20). 

The hyperbolic furActions which enter into B can be represented in the 
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form 
~0th nl,a = 1 + 2emanl- + 2e-4n~~~ + . . . (5.4) 

Then 

B=a,- a2 + 2a, (e-2nl + e+l + . . .) - 2a, (e-aQ + e+* + . . .) (5.5) 

u4 (0, P) 
0 = $ + (w - 2)* $ p y + gQ_ as) [ 1 - 2 aly; 7 y-an, + . . . ] 

0 , 

(a1=(q2+ ns9n1, aa= 4q%1%) (5.6) 

The terms in (5.6) containing exponential factors correspond to delayed 

inverses, so that for T < 2 they may all be Ignored, for T < 2C,, it is 

necessary to retain only the term with exp(- m,), and so forth. 

Limiting ourselves to the time Interval 0 < 7 < 2 , C, we have 

where Q-'U: = p-2 + (Cl,2 - a)2 (CL - DL)2 / 3% (5 -7) 

co 
q2dq 

cL = p\ nlY[(qa+nza)r-4q2nlni] ’ 
‘?’ 2qa (q2 + n2*)2e-an1dq 

llL = p \ n13 [(q” + ngy - 4q‘+w# (5.8) 
b 0 

We shall consider the Laplace transforms CL and D‘ only on the real 

axis p . getting p = ps in the integrals (5.8) we obtain 

CL = ape3, C = II2 aT2 (5.9) 
where 

co 

s 

s2ds 
CS= = 0.0455 

o (9 + I$” ((29 + Cl272 - 49 v/s2 1/s -i- c121 

For the calculation of D we Introduce the substitution 

-j&.rqj z 1 _1- 1/2 T. 

Then 
00 

-2P 

DL = % 
1 

f (T) e-pTdz 
ii 

fW = I/‘/a” + z (‘/at-J + 22 + C122)2 (5.10) 

(l/G + i)‘[(‘/aT2 + 22 + c12y - 4 (‘/da + z) (‘/fr + 1) I/l/de + z + Cl91 

The integral (5.10) may be looked upon as a Laplace transform of the func- 

tion Y(T) . Conslderlng, in addition, the presence of the factor in front 

of the integral, we may write 

s-2 

D = $ \ f (a - 2) (T - a)” da for 2>2, D = 0 for z<2 (5.11) 
a 

A graph of the velocity u0 
(X = 0) is given in Fig.4, 

fcr a suddenly applied longitudinal load 
where curve 1 is for the theory of elasticity, 

curve 2 for Equation (5.l2), curve 3 for Equation (5.14), and curve 4 for 
Equation (3.2) 



We next examine the nature of the dynamic flexiblllty according to models 
of an infinite plate which 
are described by simplified 
equations. 

1. The equation of longi- 
tudinal deformations consid- 
ering only, uO, that is, the 
basic operator L, (2.9) 

1.04 
uov - u(;’ = - qxO = 

= - 246, (4 6, (~1 (5.12) 

the solution of this equa- 

D.g60PT!+ ' 
tlon that is sought has the 

1.6 2.4 22 't.0 form 

Fig. 4 ~~(0, z) = Q (z > 0) (5.13) 

2. The equation of longl- 
tudinal deformations considering u,,, w, and the assumption of the smoothness 
of w, LT, 7) , usually used for a plate, (2.18) 

C&L," - ub' = - 2Q6, (z) 6,(z) (5.14) 

its solution 
n; (0, z) = G,Q b > 0) (5.15) 

The equation of longitudinal deformations considering uc, ml, I.e. 
Equitlons (3.2). 

Let qm = 2QhI443(~), qrl= 0. then by means of the Laplace transform in 
7 one may obtain 

noL (0, P) = ;;;m+l y;s) Q (5.16) 

where 

ml: = '/s (clas + 1) p2 + 3c,h) f V?, (Cl2 -t 1) pa + GV - (2 w + 39) 

An expansion of p2UoL In a series in negative powers of p In the nelgh- 
borhood of the point at Infinity results In the following 

Q-BUk=~+‘~_‘~+~_~+~.... (5.17) 

Hence (5.18) 

Q-1~;s i + 4.055OTc - 0.03795tQ +0.553.10-W -0.221*10-4*-p 0.530~10-~+V+ . . . 

Graphs corresponding to Formulas (5.13),(5.15) and (5.18) and given In 
Fig.4 determine the power consumed by the plate and give a representation 
of the possibilities of various slmpllfled equations for small r . 

The relation between the longitudinal force and the mean velocity over the 
cross section lnltlally corresponds to a one-dimensional deformation and then 
to a plane state of stress (urz= 0). This transition Is accompanied by 
osclllatlon relative to the asymptotic (7-m) value. Equations (3.2 satls- 
factorlly describe this process. The equations of the second order 5.12) t 
and (5.14) determine the initial dependence (first) and the asymptotlcs 
(second). 

An investigation of flexural deformations Is made difficult by the fact 
that In order to take into account displacements corresponding to self- 
equlllbratl 

"T 
stresses one must solve an equation that Is not lower than 

sixth order whereas, In the previous case, the second approxlmatlon corre- 
sponded to an equation of fourth order). 

!Che conclusions obtained above on the character of the propagation of 
stresses o,., symmetrically distributed with respect to the center of the 
plate, are also true In a number of cases for the propagation of flexural 
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stresses. 

Here, however, there Is an essential peculiarity, namely, that in bending 
moment propagation a zone, containing a certain fixed part of the energy 
(close to total energy), does not widen uniformly 
but decelerates (for 7 - m proportional to JT I. 

as in the previous case, 
In this connection, the 

deformations In an interval between the front x = 7 and the indicated zone 
decrease. It is of Interest to clarify how the transition of the wave (for- 
mation of the quasi-front) occurs under these conditions and to evaluate in 
the saTe sense the velocity cJ in the case of flexural deformation. 

6, Imwrtlg&hn of thr rqmtlonm of dynmla flrxurr, We 
of the fact that for small 7 , as well as for a sufficiently 

hood of the front for large 7 , the mean displacement 0.5~~ 

a decisive influence on the magnitude of bending moment. 

take advantage 

large neighbor- 

does not have 

Fig. 5 

To convince oneself of this, it is sufficient to compare Fig.5 (dotted 

line) which gives the distribution of the bending moment M*= M(x/‘r)/M, for 

0.5 i\< Z f: 5 (th e solid line with account taken of uI and ma, and the 

dotted line for w, zz O), with F1g.b of [173. We retain in the system (2.7) 

the quantities uI and ma (the second approximation for mO= 0) and set 

qs = 3Mc& (4 60 (4 (Q, = 0) (6.1) 
In this case 

Qrl = ZJ~i(~, (4 bl (4 (9,2=0) 

We obtain Equations 

u; - 261 
. . 

- 3csIBu1 + 5 (I - 2cs12) w2’ = - 2M,6, (t) 6, (4 (6.2) 

- 3 (1 - 2c2?) ul’ + C,,2w,” - w;= - 15 w, = 0 

After some computations similar to those given in Section 3, we obtain the 

following solution of Equations (6.2) in the form of a series with a variable 

expansion interval. The bending moment is 

M (2, r) = axlcl y ul’ + 5(1 - 2c212)w2 = (O<z<z) 

= M, + 2Mc,;{+&s [cosp,r--eosp,s + (&I2 q2+60C2~2(1-C2?‘))x 
-1 

(6.3) 

PI,; = ‘/,[(I + C,,“) 8 + 15 + 3C2,21 & {l/d [(l + C,:) q2 + 15 + 3&:12- 

- c212Q4 - [3C2,4 + 6OC2: (I- C2:) ]q2 - 45 C,,“>” 
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Graphs constructed in accordance with (6.3) are shown In Flg.5. Llke\;rlae, 

for comparison, the graph of M"(r, 7) for the first approximation Is shown 

(also for wc G 0). In this case, setting the quantity W,, E 0 In the first 
of Equations (6.2), we obtain 

u; - 241 
. . - 3C&, = - 2M,6, (z) 6, (z) 

Hence by means of Integral transforms one may find (as In (4.3)) 

M (2, z) = ul' = iI!f,~3C~~ z ;(T" - z~)-vaJ1(c21 
s 

v 3 ('c8 - zB))& (6.5) 
x 

In a form of a series 

As Is seen from Flg.5, a quasi-front Is llkewlse formed In the case of 

bending deformations. However, as a consequence of reasons given above, the 

magnitude of the bending moment In the region of the quasi-front decreases 

with time. 

&I exact analysis of the appllcablllty of approximate equations for small 

7 can be carried out by a comparison of dynamic flexibility determlqed by 

the approximate equations and by the theory of elasticity, ln the same way 

as was done In Section 5 for the case of nonflexural deformatlonof the plate. 

We now will determine the dynamic flexibility (the mean rotation angle Is 

v = "/,u,) of an Infinite plate under the action of a bending moment. We 

change the right-hand side of the first of the equations of system (5.1) to 

- WPY,2. 

Then 

(Be (4, q*) = (q’ + n#)*nldnhnlm - 4q*n&w=ba~l~) 

Proceeding In the same way as In the previous case, we find that 

M,-‘cp’ = Y2 + alT + a2 za + a3z8 for*%<2 (6.9) 
co oa 

‘11 = + s 1.96q’dq (3.4+ .4q’pfq 
= 0.0365 

o (9’ + U”p (4’) 
= 0.255, a3 = “1 

2s o (q’ + 3.4)% (’ + l)‘P(qy 
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6.76qa + 3.4 4.8 Q2d9 (P+v(P+3.4) 
- 

= -0.383 
(g+ 

1)“~ Vq”+ 3.4 1 7 F (4 1 (6.10) 

-~ 
(P(q2)=(2/la+ 3.4)2-- 442 V9" + 1 v/92+ 3.4) 

A graph of the angular velocity cp’ (6.9) Is shown In Fig.6 (curvy l), 

where the quantity “13 T’M,’ Is given on the ordinate. 

We consider now how the slmpllfled equations describe the dynamic flexl- 

blllty of a model of the plate. 

1) The equations of bending deforma- 

tions taking Into account w,, 7.41 . The basic oper- 

ator (2.11) c,;w," -w<' + 3C,,2u, = - qzo = 0 (6.11) 

- c*;t& + UIV - q" - 3c,,2u, = - qrl = - 2M,6, (4 &I (7) 

After an application of the Laplace transform we obtain for x = 0 

3 WL __ q+ 3 1 mlmf + C12p” 

MO 2 MO 2 p mlms(ml-tmz) 
(6.12) 

(mI,~=1/~(C~2aP 5 V/'/a (CA - 1J2p4 - 319) 

An expansion (6.12) ln negative powers of p In the neighborhood of the 

point at infinity is the following (6.13) 

M,-'p'qL = 3/2 - 0.658a + 0.492d - 0.410a3 + 0.359&* - 0.323~~~ + . . . 

(a = 0.882 p-y 

ThUS 

MO-‘cp’ = 3/2 - 0.329T2 + 0.0205-c" - 0.569.10-3Ts + 

+ 0.889 IO-%* - 0.890~10-7~'o + . . . (z>O) (6.14) 

2) The Tlmoshenko equations (2.19) . We note 

Fig. 6 

that after the substitution 

z = (1.2)%* 

and multlpllcatlon of the 

right-hand sides by the factor 

1.2 Equations (6.11) practi- 

cally do not differ from the 

Tlmoshenko equations (2.19). 

Hence the Tlmoshenko equations 

determine the angular velocity 

(6.15) 

cp*' = 7mqI' (T / V1.2) 

Here cp' (7) is determined 

by Expression (6.14) 
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3) The Bernoulli-Euler equa C, i 0 n . This equa- 

tion differs from the equations of Tlmoshenko in that the following are dls- 

regarded : the longitudinal Inertia (IL,‘* Z 0), the warping of the cross 

section (us - 0) and the shear (3u, = - Wo’, but O;,O * 01) 

V&&j”” + wcgo = qzl) + qrr’ (6.16) 

Threfore for qso = 0, qr. = 2M,6, (z) 6, (T) 

[PL = f worL .(O, p) = MO OF, cp’ = Moo? (6.17) 
7 

Graphs constructed In accordance with Formulas (6.141, (6.15) and (6.17) 

are shown in Fig.6 (curves 2, 3, 4, respectively). 

The deformations ala/a2 also Increase the dynamic flexibility In the case 

of the action of a bending moment. As a result of this, Equations (6.111, 

which do not take into account the components un for n > 0 , give an accu- 

rate result only at the very beginning of the process, and thereafter give 

a certain error. 

At the very beginning, the result corresponding to the Tlmoshenko differs 

from the exact result by lo%, but thereafter very rapidly nears the result 

of the theory of elasticity (In the time of propagation of the dilatatiOnwaVe 

over one quarter of the thickness of the plate). Apparently the equations 

of the sixth order (*), which take Into account the components LOO, u,, wp 

and the asymptotic value (as In Tlmoshenko equations) of the COmPOnentS us ) 

determine the angular velocity for all 7 practically exactly. 

The Bernoulli-Buler equation for small 7 (in the region shown on the 

graphs) is not applicable. 

These results allow one to make the following assertions. 

1. The Saint-Venant principle Is applicable for the study of transient 
processes in beam dynamics since deformations corresponding to suddenly 
applied &elf-equilibrating loads localize themselves In the neighborhood of 
the wave fronts and in the neighborhood of the cross section over which the 
load is applied. 

2. This assertion does not extend to self-equilibrating disturbances 
with the continuous inflow of energy into the beam (for example, to periodic 
disturbances) . 

3. The generalization (In the above-indicated sence) of the Salnt- 
Tenant principle to beam dynamics gives the possibility of studying not only 
slowly changing but also rapidly changing transient processes by means of 
the equations of longitudinal and flexural oscillations (2.16) and (2.17). 
The reasons here cre typically the same as those that allow one to apply the 
elementary static theory of beams and plates In design In the presence of 
concentrated loads. The solution which is obtained thereby gives a correct 
representation of the propagation of energy along the beam and of the change 
of the non-self-equilibrating stresses over the cross section. 

*) For the displacement problem In the presence of transverse loads, the 
best sixth-order equations are those that take Into account the components 
w,, , L(, , I+ and the asymptotic value of the component wa . 
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4. The constant cs in (2.16) determines the velocity of propagation 
of the wave front for lonaitudlnal disturbance of the beam. &I essence, how- 
ever, It is the velocity %’ propagation of the quasi-front. In the approxi- 
mate equation (2,16),the defomtfons in the region between the quasi-front 
and the actual front are neglected. 

The constants VI, us in (0.2) determ%ne the velocity of propagation of 
diecontinuities of a flexural disturbance of the Beam. However, 
whlah do not coincide with the actual velocity of propagation of d%o%&- 
itiee q, 0 may be interpreted as velocities of propagation of the quasi- 
fronts only fn*the very first period of motion (T < 5 to 7). Further, the 
quasi-fronts essentially’vanlsh, after whSch It is not possible to connect 
with the propagation of any characteristic singufaritfes of bending 
defcrma%n~! ihae D perhaps, are most correctly interpreted as 
velocities cl, 0 
the WgUUIentS with 

a result of the approximations contained in 
were derived. It Is Interesting, however, 

that although the identlflaatlon of vl, v,, with o , op gives a correct 
deaariptlon of the propagation of discontinultirs, it nevertheless gives a 
less aacurate description of the general picture of the deformat 
beam, and, In particular in determining its dynamic Plex.lbilltg t 

on of the 
Section 6) 

than for example if vl, vg are determined by the recommendation of Timo- 
shenko . 

5. Although Equations (2.161, (2.17) do not give a jump In the stres- 
ses in the regions of the actual fronts, this does not lead to any essential 
error. The reason Is that the peak of stresses In the region of the front 
shrinks rapidly and, as a result of this, in actual cases, when the loads 
are not Instantaneously applied, the magnltude of the stresses In the nelgh- 
borhood of the front will decrease. An analysis of the influence of the rate 
of looding on the magaitude of the stresses at the front was carried out on 
a model consisting of two parallel beams elastically connected Cl83. 

tlally quantitative effect on the deformation of the neutral axis and on the 
picture of the propagation of the energy along the beam. 

The advantage of the “Wave” equation (0.2) compared to the “nonwave” equa- 
tlcn (0.1) is th? posslblllty ofl clarifying the beam deformation picture Por 
7<7t whereby, as is seen from section 6,the correct evaluation of the 
dynamic flexibility is obtained down to 7 - 0 . 

1. Uflland, I&g., 0 raspr stranenli voln prl poperechnykh kolebaniiakh 
sterahnei I plastin Y 
of beams and plates) . 

On wave propagation in transverse osclllatlons 
pry Vo1.12, 1p 3, 1948. 

2. Utesheva, VA, Prlblishennye uravna 
‘t’ 

la dinamiki uprugogo streshnla 
krugovogo poperechnogo seaheniia Appoxbate equations of the dynam- 
ias of an e3.aatlc beam of circular tranaverse cross section). fsv. 
&ad.&& a, *kh.Xashlnost., NQ 4, 1963. 

3. Petrashen’, %I., B teorll ko ebanil tonkikh plastln (& the theory of 
oscillation of thin plates f . Uchen.~p,leningr.gos .ihriv.. ~ 149, 
@ 24, 1951. 

4. Nigul, U.K., Primenenie trekhmernol teorii uprugosti k dizu VclnOVOgO 

protsesaa isgiba polubeeko echnoi pllty prl kratkovremsnno delstvu- 
lushchef kraevol nagruxks 9 The application of the thee-d~ensio~l 
theory of elastiaity to the analysis of the wave proaess in the bend- 
lng of a s@-lnf%lte plate under the action of a short-time bound- 
ary load). Pnx Vol.2’7, MI 6, 1963. 



Saint-Venant's principle in the dynamics of beam8 315 

5. Abramson, R.N., Plass, H.J. and Ripperger, E.A., Rasprostranenle voln 
napriazhenll v sterzhnlakh I halkakh (Propagatlog of Stress Waves In 
Rods and Seams). 
liter., 1961. 

Collection Problemy mekhanlki , @ 3, Izd.1nost.r. 

6. Ripperger, R.A. and Abramson, 
ral waves in' elastic beams. 

R.N., A study of the propagation of flexu- 
J.appl.Mech., Vo1.24, tS 3, ,1957. 

7. Mlndlin, R.D., Influence of rotatory Inertia and shear on flexural 
motions of Isotropic plates. J.appl.Mech., Vo1.18, @ 1, 1951. 

8. Abramson, H.N., The propagation of flexural elastic waves in solid clrcu- 
lar cylinders. J.acoust.Soc.Am., Ng 29, 1957. 

9. Davies, P.M., 
Bodies). 

Volny naprlazhenll v tverdykh telakh (Stress Waves In Solid 
Izd.Inostr.Llt., 1961. 

10. Mindlln, R.D. and Medlk, M.A., Extensional vibrations of elastic plates. 
J.appl.Mech,, Trans.of the ASME, Series g, v01.26, @ 4, 1959. 

11. Vekua, I.N., Ob odnom metode rascheta prlzmatlchesklkh obo1ochek (On a 
method of analysis of prismatic shells). Trudy tblls.mat.Inst., 
vo1.21., 1955. 

12. Tlmoshenko, S.P., Teorila kolebanll J lnzhenernom dele (Theory of Oscll- 
lations in Engineering). Gostekhlzdat, 1932. 

13. Kratzer, A. and Franz, V., 
Functions). 

Transtsendentnye funktsll (Transcendental 
Izd.Inostr.Llt., 1963. 

14. Jones, O.E. and Ellis, A.T., Longitudinal Strain Pulse Propagation In 
Wide Rectangular Bars. Part 1 and 2, J.appl.Mech., Vo1.30, @ 1,l963. 

15. Broberg, K.R., A problem on stress waves In an Infinite elastic plate. 
K.tek.R'ogsk.Handl., Stockholm, @ 139, 1959. 

16. Vlshlk, M.I. and Llusternlk, L.A., Asimptotlcheskoe povedenle reshenll 
llnelnykh dlfferentslal'nykh uravnenll s bol'shiml ill bystro menla- 
lushchlmlsia koeffltsientami I granichnyml uslovllami (Asymptotic 
properties of'the solutions of linear differential equations with 
large or rapidly changing coefficients and boundary conditions). 
Usp.mat.Nauk, Vol.15, t@ 4, 1960. 

17. FlUgge, W. and Zajac, E.E., 
Bd.28, 1959. 

Sending Impact waves in beams. Ing.-Arch., 

18. Roley, B.A., 
E l, 1960. 

Cn a dynamical Saint-Venant principle, J.appl.Mech., Vol.27, 

19. Soley, B.A. and Chl-Chang Chao, Some solutions of Timoshenko beam equa- 
tions. J.appl.Mech., Vo1.22, No 4, 1955. 

20. Cagnlard, L., Rdflexlon et refraction des ondes selsmiques progressives. 
Gauthler-Villars, Paris, 1939. 

Translated by E.R.Z. 


